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Outline

• ITAPS data models & interfaces

• ITAPS services

• ANL/ITAPS activities & opportunities
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The ITAPS data model abstracts 
PDE-simulation data hierarchy

• Core Data Types

– Geometric Data: provides a high level description of the 

boundaries of the computational domain; e.g., CAD, image, or 

mesh data (iGeom)

– Mesh Data: provides the geometric and topological information 

associated with the discrete representation of the domain (iMesh)

– Field Data: provides access to time dependent physics variables 

associated with application solution.  These can be scalars, 

vectors, tensors, and associated with any mesh entity. (iField)

• Data Relation Managers (iRel)

– Provides control of the relationships among the core data types

– Resolves cross references between entities in different groups 

– Provides functionality that depends on multiple core data types
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The ITAPS data model has four 
fundamental “types”

• Entity: fine-grained entities in interface (e.g., 
vertex, face, region)

• Entity Set: arbitrary collection of entities & 
other sets
– Parent/child relations, for embedded graphs 

between sets

• Interface Instance: object on which interface 
functions are called and through which other 
data are obtained

• Tag: named datum annotated to Entities and 
Entity Sets
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The iMeshP parallel interface defines 
a partition model

• Process:  a program executing; 
MPI process
– # of processes == MPI_Comm_size

– Process number == MPI_Comm_rank

• iMesh instance:  mesh 
database provided by an 
implementation 
– One or more instances per  process

• Partition:  describes a parallel 
mesh
– Maps entities to subsets called parts

– Maps parts to processes

– Has a communicator associated with it
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The Partition Model

• Ownership: right to modify an entity

• Internal entity:  Owned entity not on 
an interpart boundary.
– E.g., all triangles w/ same color as 

iMesh label for part

• Part-Boundary entity:  Entity on an 
interpart boundary
– E.g., bold edges

– Shared between parts (owner indicated
by color; other parts have copies).

• Ghost entity: Non-owned, non-part-
boundary entity in a part
– E.g., triangles whose color is different from iMesh label

– Needed for adjacency and/or solution data

• Copies:  ghost entities + non-owned part-boundary entities.
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Basic and advanced functionalities     
are supported in the geometry interface

• Model loading and initiation

• Topological queries of entities and 

adjacencies

• Pointwise geometric shape 

interrogation

• Parametric coordinate systems

• Model topology modification

• Model construction (primitives, 

booleans, transforms, etc.)
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Relating mesh and geometry data is 
critical for advanced ITAPS services

• Required for e.g., adaptive loops, mesh 

quality improvement

• Mesh/Geometry Classification Interface

– Manages the relationship between the high 

level geometric description and the mesh

– Called by an application that knows about 

both

• Capabilities

– For a given mesh entity, get the geometric 

entity against which it is classified

– Establish a classification relationship between 

a mesh entity and a geometric entity
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ITAPS Interfaces Designed for 
Interoperability

iMesh
(C) ‏

implA.CC

app1.f77 app2.f90 app3.CC app4.c

implB.c implC.f77

Babel

Server

f77 client

Python client

Java client

app1.f77

app2.py

app3.java

• Interoperability across language, 
application, implementation

• Multiple call paths to the same 
implementation

• Efficiency preserved using 
direct, C-based interface
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Simple Example:  HELLO iMeshP

#include "iMesh.h"

#include "iMeshP.h"

#include <mpi.h>

int main(int argc, char *argv[]) {

char *options = NULL;

iMesh_Instance mesh;

iMeshP_PartitionHandle partition;

int me, dim, num, ierr, options_len=0;

iBase_EntitySetHandle root;

/* create the Mesh instance */

iMesh_newMesh(options, &mesh, &ierr, options_len);

iMesh_getRootSet(mesh, &root, &ierr);

MPI_Init(&argc, &argv);

MPI_Com m_rank(MPI_COM M_ W O RLD, &me);

/* Create the partition. */

iMeshP_createPartitionAll(mesh, MPI_COM M_ W ORLD, &partition, &ierr);

/* load the mesh */

iMeshP_loadAll(mesh, partition, root, argv[1], options, &ierr, 

strlen(argv[1]), options_len);

/* Report number of Parts in Partition */

iMeshP_getNumParts(mesh, partition, &num, &ierr);

printf("%d Number of Parts = %d\n", me, num);

. . .

1

2

3

Parallel Version: HELLO iMeshP

1) Instantiates Partition

2) Reads mesh into mesh 
instance and Partition

3) Reports # parts in Partition

Revised 11/08
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HELLO iMeshP Makefile

CC = mpicc-g

IMESH_DIR = /usr/local/itaps/FMDB_iMeshP

include $(IMESH_DIR)/lib/iMesh-Defs.inc

INCPATH += $(IMESH_INCLUDES)

LIBS += $(IMESH_LIBS)

hello_iMeshP: hello_iMeshP.c

$(CC) $(INCPATH) -c hello_iMeshP.c

$(CC) -o $@ hello_iMeshP.o $(LIBS) 

Revised 11/08
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ITAPS API's: Argument Handling 
Conventions

• ITAPS API's are C-like and can be called directly from C, Fortran, C++

• Arguments pass by value (in) or reference (inout, out)

– Fortran: use %VAL extension

• Memory allocation for lists done in application or implementation

– If inout list comes in allocated, length must be long enough to store results of 
call

– By definition, allocation/deallocation done using C malloc/free; application 
required to free memory returned by implementation

– Fortran: Use “cray pointer” extension (equivalences to normal f77 array)�

• Handle types typedef'd to size_t (iBase_EntityHandle, 
iBase_EntitySetHandle, iBase_TagHandle, iMesh_Instance)

• Strings: char*, with length passed by value after all other args

• Enum's: values (iBase_SUCCESS, etc.) available for comparison 
operations, but passed as integer arguments

– Fortran: named parameters
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Argument Handling Conventions

Issue C FORTRAN SIDL 

Function Names iXxxx_ prefix Same as C Removed iXxxx_ prefix; SIDL interface 

organization 

Interface Handle Typedef'd to size_t, as type 

iXxxx_Instance; instance handle is 

1
st
 argument to all functions 

#define'd as type Integer; handle 

instance is 1st argument to all 

functions 

Interface type derived from sidl.BaseInterface 

Enumerated Variables All arguments integer-type instead 

of enum-type; values from 

enumerated types 

Same, with enum values defined as 

FORTRAN parameters 

Int-type arguments;  enumerated types defined 

in iXxxx:: namespace, and values appear as 

iXxxx::enumName_enumValue 

Entity, Set, Tag Handles Typedef'd as size_t; typedef types  

iBase_EntityHandle, 

iBase_EntitySetHandle, 

iBase_TagHandle 

#define'd as type Integer Handles declared as SIDL opaque type 

(mapped to void* in C/C++ server) 

Lists · In: X *list, int occupied_size 

· Inout: X **list, int 

*allocated_size, int 

**occupied_size 

· malloc/free-based memory 

allocation/deallocation 

Same, with Cray pointers used to 

reference arrays (see FindConnectF 

example 

· In: sidl::array<X> list, int occupied_size 

· Inout: sidl::array<X> &list, int 

&occupied_size 

· sidl::array class memory allocation 

String char*-type, with string length(s) at 

end of argument list 

char[]-type without extra length 

argument (this length gets added 

implicitly by FORTRAN compiler) 

sidl::string type without extra length argument 
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Performance

• Large applications balance memory and cpu time performance

• Implementations of iMesh vary on speed vs. memory performance

– Create, v-E, E-v query, square all-hex mesh

– Entity- vs. Array-based access

• Compare iMesh (C, SIDL), Native (MOAB), Native Scd (MOAB), CUBIT

– Ent-, Arr-based access

– All-hexahedral square structured mesh

Native Scd

C Ent ‏‏ ‏‏

CUBIT

SIDL Ent

SIDL Arr

C Arr ‏‏ ‏‏

Native Ent

Native Arr

C Ent ‏‏ ‏‏

SIDL Ent

C Arr

Native Scd

Native Ent

Native Arr

CUBIT
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Performance in building a finite 
element stiffness matrix
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Native 10479

Array-based 10774 2.8%

Entity Iterator 11642 11.1%

Workset Iterator (1) 11351 8.3%

Workset Iterator (3) 11183 6.7%

Workset Iterator (5) 11119 6.1%

Workset Iterator (10) 11095 5.8%

Workset Iterator (20) 11094 5.8%

• Set up a simple stiffness matrix 
for a 2D diffusion equation

• Examine costs of entity access via 
native data structures, arrays, 
entity iterators and workset
iterators

• Arrays minimize time overhead 
but require a data copy

• Entity iterators are straightforward 
to program, minimize memory 
overhead, but maximize time cost

• Entity array iterators balance 
time/memory tradeoffs but are the 
most difficult to program 

∇2u = f

u(x=0)=1 u(x=1) = 1

uy(x=0, x=1) = 0
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Performance of iMesh Swap for 3D 
Meshes

• Comparing GRUMMP native implementation to service 
with GRUMMP iMesh implementation

• Most remaining overhead is in transcribing data to 
return format expected by iMesh

Case # of Native iMesh

Tets Swaps Rate (1/s) Swaps Rate (1/s)

Rand1 5104 10632 29500 10838 21300

Rand2 25704 65886 27700 67483 22100

Airplane 251140 25448 3380 28629 2800

Rocket 464080 53331 3540 59330 2790
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Performance of Zoltan Partitioning for 
3D Meshes

• Comparing MOAB native implementation linking to 
Zoltan partitioning service with the MOAB iMesh

implementation

• Using a coordinate bisection geometric partitioner on 

tetrahedral meshes and array-based access to the 
data

15591 0.866 0.869 0.35%

20347 0.971 0.976 0.51%

34750 1.28 1.31 2.34%

54383 1.72 1.75 1.74%

100630 2.76 2.82 2.17%

Number 

of Tets

Native 

(sec) 

iMesh 

(sec)

iMesh 

Overhead



Omega3P,
Sensitivity,

Optimization
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• Optimizing a cavity design is still mostly a manual process

• Future accelerators employ complex cavity shapes that require optimization to improve 

performance

• Geometry & meshing support:

RIA

ILC

LCLS

Shape Optimization for 
Accelerator Cavity Design
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al a1 a2
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zcl zcrzcbzcc
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• Generate new geometric model G(p’) 
given a parameter vector p’
– MkILCCell function
– DDRIV

– CGM (iGeom)

• Associate old mesh m(po) 
to new geometry G(p’),
project to CAD
– DDRIV

– CGM (iGeom)

– MOAB (iMesh)

– LASSO (iRel)

• Smooth mesh
– …

– Mesquite

Smooth Curves Smooth VolumeSmooth Surfaces

New geom, 

old mesh

Project to CAD, 

inverted elements

Shape Optimization for 
Accelerator Cavity Design
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Services Provided by DDRIV

• Parameterized geometric model construction

– You write function which constructs model using 

iGeom

– DDRIV acts as driver and handles IO

• Coordination of mesh smoothing on geometric model

• Re-classification of “old” mesh on “new” model

• Target matrix-based smoothing of re-classified mesh

• Computation of design velocities & embedding on 

mesh using iMesh Tags
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Mesquite provides advanced mesh 
smoothing capabilities

• Mesquite is a comprehensive, stand-alone 
library for mesh quality improvement with the 
following capabilities

– Shape Quality Improvement

– Mesh Untangling

– Alignment with Scalar or Vector Fields

– R-type adaptivity to solution features or 
error estimates

• Maintain quality of deforming meshes

• Anisotropic smoothing

• Control skew on mesh boundaries

• Uses node point repositioning schemes
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Our mesh quality improvement work 
has impacted many DOE applications

Application: Plasma implosion using ALE methods
Challenge: Maintain good mesh quality and biasing 

during deformation of plasma.
Impact:  Prior to use of Mesquite, this calculation 

could not be performed by Alegra due to 
ineffective mesh rezoning algorithm.

Application: Burn of rocket propellants in a 
time-deforming domain

Challenge: Maintain good tetrahedral element 
shape quality as domain deforms

Impact: Condition number smoother (through 
ShapeImprovementWrapper) enabled 
many burn simulations at CSAR/UIUC.

Application: Shape optimization for 
accelerator cavities to minimize losses

Challenge: Rapidly and smoothly update the 
mesh to conform to trial geometries

Impact: Used the deforming mesh metric to 
prototype geometry & mesh update 
model for potential use in SLAC 
accelerator design studies.
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ITAPS has been integrated with 
VisIt as a database plug-in

• A single plug-in supports multiple ITAPS 
implementations

• Supports all entity types

• Supports subset and and tag data 
visualization

• Future integration will use VisIt’s in-situ 
‘simulation’ interface
– Will enable any ITAPS-compliant software to 

integrate with VisIt at run-time
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VisIt can be used to display test data 
from multiple implementations

Example of VisIt displaying test data from 

multiple ITAPS implementations simultaneously 



Parallel Tetrahedral Mesh Generation

• Mesh volumes and surfaces in parallel

• Use graph partitioning to partition work

• Use of component-based mesh, geometry, partitioning

• 1st-generation tool developed before ITAPS parallel interface specification

• Parallel communication handled at application-level

• Need production-capable tool

Processor:       1                        2                  3                   4



CAD-Based Monte Carlo Radiation Transport

Facet-based Ray Tracing

• Most Monte Carlo codes use CSG-type 

geometry construction

• Replaced with high-fidelity CAD modeling 

– Use modern geom construction tools

– Model more complex solids

• Previous CAD-based MC 20-100x slower than native

– Facet-based Oriented Bounding Box (OBB) tree acceleration reduced 

slowdown to 2-5x

• Component-based approach simplifies introduction into multiple MC codes

– Incorporated into ITS in < 1 week

CGM/MOAB

Ray-OBB 
intersection

MCNPX/CGMCUBIT ITS/CGM

ARIES Compact Stellerator

AABB

O
BB

level 1

level 2

level 3

OBB Tree



CAD-Based Monte Carlo Radiation Transport

ITER Modeling & Code Comparison Effort
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MC-Based Neutron Transport for ITER

Module 13 First Wall/Shield Design

• Heat deposition & cooling

• Helium generation close to weldable components

CGM→MOAB → VTK → Visit
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Solution Coupling

• Need to couple physics (TH, 
neutronics, structural mechanics)
for reactor simulation

– Need to preserve standalone development capability

• Assumptions:

– Each physics solved on its own mesh, optimized for that physics

– Each physics mesh distributed with its own distinct MPI 

communicator, independent of other mesh

– On each processor, meshes for both/all physics stored in the same 

MOAB instance

• Coupling algorithm:

– Initialization (read mesh, initialize searching structures (kdtree) )

– Point location

– Interpolation

– Normalization
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Solution Coupling

Results

• Implemented as tool in MOAB

• 12k hex, 130k tet

• Contrived data field

• Not implemented on iMesh

– Tree-based search

– Field interpolation
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Solution Coupling

Timing, Future Work

• Future work:

– High-order (spectral) element interpolation

– Subset-based normalization

– Error norms

– Timing, scalability
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CGM Port to Open.Cascade

• CGM: provides common interface to geometry from multiple engines

– ACIS

– Catia/ProE (Sandia or weapons complex-restricted)

– Facet-based geometry

• Smooths topological model variations

• Porting to open-source Open.Cascade modeler

– Substantial improvements to OCC build process (autoconf-based)

– Ready for (very) friendly external users 

(http://trac.mcs.anl.gov/projects/ITAPS/wiki/CGM)

• Methods for getting OCC-based model

– Read OCC BREP format

– Read/translate IGES/Step format

– Construct model using CSG approach

• Implemented reader for MCNP input file syntax

• Simple thing to do same for Superfish?
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ABTR 1/6 Core Mesh Generation

• CUBIT-based approach required 6 GB for ~5M elements

• Different ways to generate mesh

– Start with ass’y geometry + mesh, copy/move/merge in CUBIT

– Start with ass’y mesh, copy/move/merge in external tool

• Development underway in MeshKit

• Need to handle sets carefully (material, geometric topology, BC’s)

– Copy/merge sets

– Start with cross section 2d mesh, extrude into 3d

• Will require extrude tool in MeshKit

• Need to handle sets carefully: copy/expand, but with extrusion
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• CAD interaction: CGM

• Mesh generation: GRUMMP, NWGrid

• Mesh databases: FMDB, MOAB

• Mesh improvement: Mesquite, swapping tools

• Parallel Adaptive loops: FMDB, NWGrid, MeshAdapt

• Front tracking: Frontier

• Partitioning: Zoltan

The ITAPS team has developed tools 
to address these needs
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Opportunities for Collaboration

• ANL/ITAPS received SAP funding for a post-doc starting in November, 
should have it filled by end of January

• Near-term opportunities
– Incorporation of CAD into production shape optimization, curved boundary 

correction tools

– Parallel meshing

– Fast ray-tracing, EB meshing on complex CAD

• Longer-term opportunities
– Common set of CAD-based cavity models

– Direct comparison of results from different codes on common mesh-based 
representation

– Data analysis & viz through common mesh interface

– ?


